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Annihilation reactions in two-dimensional percolation clusters: Effects of short-range interactions

M. Hoyuelos and H. O. Martin
Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata,
Funes 3350, 7600 Mar del Plata, Argentina
(Received 29 September 1992)

We report Monte Carlo simulations of annihilation reaction 4 + 4 —0 in two-dimensional percola-
tion clusters. In the model, the particles diffuse coupled by nearest-neighbor (NN) and next-nearest-
neighbor (NNN) interactions. The following cases have been studied: (i) repulsive NN interaction, (ii)
repulsive NN and NNN interactions, and (iii) repulsive NN and attractive NNN interactions. In the
intermediate-time regime, for cases (i) and (ii), we found that the density of particles p approximately de-
cays as p~t*7’(% <y < 1), where ¥ depends on specific values of interactions but is independent of the

initial density p(¢ =0). For case (iii) there is no power-law decay. For the short- and intermediate-time
regimes, a scaling ansatz for cases (i) and (ii) is found.

PACS number(s): 05.40.+j, 82.20.Wt, 82.20.Mj

I. INTRODUCTION

In the last few years, much effort has been dedicated to
the study of the annihilation reaction (see, e.g., [1,2] and
references cited therein)

A+A4—-0. (1)

In these works the particles diffuse on a specific (Euclide-

n [3,4], fractal [S—7], multifractal [8], or anisotropic [9])
substratum and disappear when two of them collide. The
reaction itself is considered to be instantaneous and ir-
reversible. When there is no input of particles, as in the
present work, the density p(¢) decays as a function of ¢.
In most of these models the interactions between diffusive
particles were not taken into account. In this so-called
“diffusion-controlled reaction” only one characteristic
time ¢; appears [4]. In the long-time regime (¢#>>¢,) it
was found that [4,6,7,10,11]

;2

p(t)~ t_l

ifd; <2

otherwise @
d; being the spectral dimension of the substratum where
the particles diffuse [12]. Due to the anomalous behavior
of diffusion for d; <2 [10], the theoretical study in one di-
mension and fractal substrata has attracted special in-
terest. Equation (2) has also been experimentally verified
[1].

In real systems, the interactions are present (see, e.g.,
[13]). In an effort to understand their influence, we have
made a careful examination of p(¢) for a simple annihila-
tion reaction model, with short-range interactions in the
fractal two-dimensional percolation cluster (d; =4).

II. THE MODEL
AND THE MONTE CARLO SIMULATION

We have considered the reaction (1) between particles
diffusing on a two-dimensional percolation cluster. In the
simulation, the standard percolation model (see, e.g., [14])
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was used on a 350X350 square lattice. Only clusters
which percolate in both directions of the square lattice, at
the critical probability p.=0.593 (see, e.g., [15]), were
selected.

In our model, we consider nearest-neighbor (NN) and
next-nearest-neighbor (NNN) interactions between parti-
cles with energies U’ and W’ respectively. We will con-
centrate our attention on the cases of U’'>0 (repulsive)
with either W’ > 0 (repulsive), W’ =0 (null), or W’ <0 (at-
tractive) interactions.

The energy H of a given configuration of particles can
be written as

H/kpT= 3 Unn;+ 3 Wnng, (3)
NN i,j NNN i,k

where n;, equal to O or 1, is the occupation number of site
i in the lattice. kp is the Boltzmann constant and T the
temperature. U (=U'/kgT) and W (=W'/kgT) are
the dimensionless NN and NNN interactions between
particles. NN i,j and NNN i,k denote the summation
over the NN and NNN pairs.

The reaction takes place between NN occupied sites.
We arrange the initial configuration of particles so that
there are no pairs of NN occupied sites. In order to do
this, we take a set of all NNN sites that belong to the per-
colation cluster and we occupy each of these sites with
equal probability 2p,. In this way, the actual initial den-
sity, defined as the number of particles per cluster site, is
po (then py=0.5 is the maximum possible coverage).
After that, the diffusion starts.

The particles perform a random walk between NN
sites of the percolation cluster. As is usually done (see,
e.g., [7] and Meakin and Stanley in [6]), we use periodic
boundary conditions in order to avoid edge effects. The
lattice is large enough to avoid the exponential decay of p
at large times caused by the artificial visitations in finite
periodic systems [7].

In the simulations, at each jump attempt, one of the
N(2) particles present in the system at time ¢, randomly

71 ©1993 The American Physical Society



72 M. HOYUELOS AND H. O. MARTIN 48

chosen, attempts to jump to any of the four NN sites of
the square lattice with equal probability +. The following
situations may appear.

(1) The chosen site does not belong to the cluster and
the jump is not performed.

(2) The chosen site belongs to the cluster, then the
selected particle attempts to jump with probability P
given by (Metropolis method, see, e.g., [16])

P=min[1l,exp(—AH /kzT)], 4)

where AH is the energy change in the movement of the
selected particle to the chosen site.

If the jump is performed and the chosen site is NN of a
second particle, both particles react and the number N(z)
is reduced to N(t)—2. If the particle jumps and the
chosen site is NN of more than one particle, the reaction
is performed with one of these particles with equal proba-
bility.

In the simulation, a time interval equal to 1 is defined
as the time needed for the N(¢) particles to have, on aver-
age, one chance to jump. Specifically, after each jump at-
tempt, the time ¢ is increased by 1/N(z).

The density p(t) is obtained by averaging the number
of particles per cluster site at time ¢ over many (typically
20-40) samples. Every five samples, a new percolation
cluster was generated.

III. RESULTS AND DISCUSSION

In the present paper we have worked with the follow-
ing cases of short-range interactions: (a) Null interaction
(U=W=0); (b) repulsive NN interaction (U >0, W=0);
(c) repulsive NN and NNN interactions with the condi-
tion U= W >0; and (d) repulsive NN interaction and
attractive  NNN interaction with the condition
U> —W>0. Figure 1 shows the time dependence of the
density (in the log-log scale) for different values of the in-
teractions. Specifically we have plotted the cases
U=W=0; U=4, W=0; U=W=4,and U=4, W= -3,

A. Case (a) and general comments

Let us start discussing the general conclusions which
can be obtained from Fig. 1. After that, we will analyze
specifically each case of interaction. The case U=W =0
is shown for comparison with other cases. For a very
long-time regime, it is known that
Ya

pty~t " (t>w), (5

where, for the percolation cluster, the value of the asymp-
totic exponent v, is [see Eq. (2)]

Ya=ds/2=2 . 6)

The full straight line of Fig. 1 has a slope —%. In the in-
terval 4 <log,ot <6 our results can be fitted by a straight
line of slope 0.63+0.01. This value (less than y,) is in
agreement with other Monte Carlo simulation results of
d; [17] and v, [7]. The small curvature suggests that the
asymptotic behavior will hold for longer times not
reached in our simulation.
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FIG. 1. Density p vs time ¢ in log;o-log;, scales for annihila-
tion reactions on percolation clusters (p, =0.593) on square lat-
tice of linear size L =350 and for different short-range interac-
tions [see Eq. (3)]: o, U=W=0; O, U=4, W=0; A,
U=W =4; and +, U=4, W= —3. The straight line is drawn

as a guide and has a slope — %

For very long times, independently of the interactions,
the density p is very small, therefore, on average, the in-
terparticle distance is very large. For this reason, one ex-
pects that the rate of reaction (1) will be controlled by
diffusion processes. Then it is expected that after a
second characteristic time ¢,, Egs. (5) and (6) will hold in-
dependently of the short-range interactions. This asymp-
totic regime was not reached in our simulation. Howev-
er, the approach of all curves to the case U= W =0, ob-
served in Fig. 1 at t~10% is an indication that the
asymptotic behavior will be valid for longer times. The
asymptotic regime has also been suggested in other relat-
ed models [18,19].

Since repulsive interaction diminishes the reaction
probability, log,qp will remain almost constant for a
longer-time regime 0 <t <<t, compared with the case of
no interaction. The plateau is clearly seen in Fig. 1 where
it is also seen that ¢, depends on the specific values of U
and W. For intermediate times ¢; <<t <<t,, the behavior
of p(t) strongly depends on the interactions.

B. Case (b)

In Fig. 2 we plot loggp(t) versus log,gt for U=4,
W =0 and U=6, W=0; for py=0.2 and 0.05. From this
figure one can see that in the intermediate-time regime
(t, <<t <<t,) the density approximately behaves as

p(t)~t~7 . (7

When U >>0, the value of the intermediate exponent y
depends on the value of U, but is independent of the ini-
tial density p,, suggesting some degree of universality.
Strictly speaking, the exponent y slightly depends on p,
for small values of U. This dependence decreases as U in-
creases. For example, for U=4 we found that the
straight lines have slopes y =0.80+0.01 and 0.85%0.01
for py=0.05 and 0.2, respectively. For U=6, the
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FIG. 2. Density p vs time ¢ in logs-log;o scales for potentials
U >0, W=0. The curves correspond to the following cases: [,
U=4, py=0.2; ®, U=4, p,=0.05; A, U=6, py=0.2; and O,
U=6, pp=0.05. The straight lines have slopes —0.93 and
—0.85.

straight lines have slopes ¥y =0.90+0.01 and 0.93+0.01
for the same values of p,. It is expected that in the limit
U — « this dependence disappears for all p,>0. Never-
theless this limit cannot really be reached because also
t;— o0 when U— « (the reaction never occurs). Let us
remark that the difference in the values of ¥ obtained for
finite values of U (of about 6% for U=4 and 3% for
U =6, when p, changes by a factor 4, from p,=0.05 to
0.2) is small and it is of the same order as the error in the
exponents for finite systems. For example, as was men-
tioned, for U= W =0 we obtain ¥, =0.6310.01 in place
of the exact value y, =2 (the error is 6%).

Let us note that the reaction delay produced at short
times is recovered at intermediate times. That is, ¥ >,
(see also Fig. 1). Notice also that the value of y increases
as U increases. The length of the intermediate-time re-
gime, where Eq. (7) holds, also increases as U increases
[see Figs. 3(a) and 3(b)]. Let us stress that this length is of
about two decades for U=6.

The same kind of behavior as those shown in Fig. 2
was obtained in [18] for the annihilation reaction (1) in a
one-dimensional lattice. In the model of Ref. [18] the in-
teractions are not present, but the reaction (1) occurs
with a probability p when two particles attempt to occu-
py the same lattice site. The probability p <1 there plays
a role similar to that of the interaction U >0 in our
present work. From Ref. [18] we propose the following
scaling ansatz for the short- and intermediate-time re-
gimes 0 <t <<t, and for a fixed value of U:

p(t)=pof(t/t,), (8)
where

1 for x <<1

x~ Y for x>>1 and ¢t <<t, ° ©)

flx)~

From Eq. (7) one has that p(z)~py(t/t;)” ¥, and using

the fact that p(¢) is independent of p, when ¢ >>¢, one ob-
tains

ty~pg VT . (10)

In order to check this scaling ansatz we plot, in Fig. 3,
logo(pt”) versus logo(tpl/7) for the cases U=4, W=0,
and U=6, W =0, using two different values of p,. As is
expected, the data collapse improves when U increases
[see Figs. 3(a) and 3(b)]. Other similar data collapses (not
shown here) have been obtained for different values of
U>0, W=0, and p,. All these results suggest that the
proposed scaling ansatz is a very good representation of
our numerical data for large values of U.

From Ref. [18] and the results obtained in the present
work (the value of y increases, as U increases, see Fig. 2),
it is expected that when U— o, ¥y —1. The case y =1 is
described by the mean-field equation —dp /dt ~p?, where
diffusion effects are irrelevant. For one-dimensional sys-
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FIG. 3. Plot of pt” vs tp}’? in logo-log), scales for potentials
U >0, W=0. The election of the axes is more appropriate here
than in Fig. 2, in order to carefully analyze the validity of the
power-law decay of Eq. (7) (which here corresponds to a straight
line of slope zero). (a) corresponds to U=4, y=0.85; curved
line, p-0.2; ®, py=0.05. (b) corresponds to U=6, y=0.93;
curved line, py=0.2; ®, py=0.05.
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tems the behavior p(¢)~¢~!

[19,20].

The deviation of the plateau behavior (i.e., the break-
down of the scaling ansatz) at long times, shown in Fig.
3(a), is an indication of the change towards the asymptot-
ic regime behavior [Egs. (5) and (6)] expected for ¢ >>t,
(y,=2<y=0.85). It is also expected that the same de-
viation should appear for the case U=6, W =0 for
longer times than those shown in Fig. 3(b).

is also suggested in Refs.

C. Case (¢)

In order to study the influence of the repulsive NNN
interaction (W >0), we will start discussing the limiting
case U=W >0 (the case W > U seems to be unrealistic,
and for this reason it is not studied). In Fig. 4 we plot
logo[p(2)] versus log,ot for U=W =4 and p,=0.2 and
0.05. Special initial configurations without pairs of NNN
occupied sites were used. We found that the power-law
behavior of Eq. (7) for intermediate times holds also for
this case. Comparing the data of Figs. 4 and 2, one con-
cludes that the scaling ansatz of Eqgs. (8)—(10) will also be
valid. From a detailed analysis (not shown here) we find
that the collapse improves when the value of U increases,
for cases U =W and U > W 20 with W fixed.

If one starts with initial configurations defined in Sec.
11, the initial pairs of NNN occupied sites can easily an-
nihilate at very short times [see Egs. (3) and (4) and
remember that the reaction takes place between NN oc-
cupied sites]. This effect is shown in Fig. 4 (see circles
and triangles there). In general, for cases with and
without initial NNN occupied sites, with the same values
of U= W >0, the behavior of p(z) in the intermediate-
and long-time regimes is the same. Then the power-law
decay holds for both cases with the same value of y.

[YYYYYN

a

— 14 ©0000000054, B
°%

logy(p)

log(¢)

FIG. 4. Density p vs time ¢ in logjo-log;o scales for the in-
teraction U=W=4. A, py=0.2 and initial configuration
without NNN occupied sites. O, py=0.2 and initial
configuration with NNN sites; note the decay at very short
times with respect to the previous case. Curved line, py=0.05
without NNN occupied sites. The straight line has a slope
—0.87.

D. Case (d)

Let us finally consider case (d) where attractive NNN
interaction (W <0) is present. Due to this interaction,
the most energetically favorable configuration of two par-
ticles [see Eq. (3)], is when they form a pair of NNN oc-
cupied sites (see Fig. 5).

A way of characterizing this structure formation is to
measure the number of particle pairs at NNN sites. We
define O(t) as the number of pairs of NNN occupied sites
per particle present on the percolation cluster at time ¢.

In Fig. 6 log,op(t) and ©(¢) are shown as a function of
log,ot. The interaction used was U=4 and W=—3. In
these figures, © grows at short times (0<t <10’ and
0=t <10>*, for Ppo=0.05 and 0.2, respectively), indicat-
ing structure formation (also see Fig. 5). In intermediate
times the structures disintegrate. An abrupt decay of
O(t) and log,gpo(t) takes place (3.4<log,t <4.6 and
4 <log,ot <4.8, for p,=0.05 and 0.2). The decay of O(t)
and log,go(?) is more abrupt for larger values of p,. Let
us remark that the maximum of ©(¢) takes place at time
tmax =11 (tmax ~10°%, 10>* for p,=0.05 and 0.2, respec-
tively). In the intermediate regime the behavior of
log,go(¢) strongly depends on p, and for this reason it is
not possible to find a simple scaling ansatz of the type of
Egs. (8)-(10). At long times, the structures disappear
(6—0).

In Fig. 6(b) values of ©(¢) for the rest of the cases are
shown as a function of log;y¢. Let us note that only for
case (d) (W <0) does O(t) increase at short times. For all
the other cases ©O(¢) decreases for all times. Strictly
speaking, for the case with no initial NNN occupied sites
(not shown in the figure), there is a very small increase of
O(t) at short times, but this increase is irrelevant because
we impose that ©=0 at t =0.

FIG. 5. The NNN structures of particles. A 50X 50 section
of the percolation cluster on a 350X 350 lattice is shown. The
empty and occupied cluster sites are denoted by small and big
circles, respectively. The snapshot picture corresponds to
t =500 with interaction U=4, W= —3, and initial density
po=0.2. The particles separated by NNN distance have been
joined by lines in order to guide the eyes. One clearly sees that
most of the particles belong to NNN structures of particles.
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FIG. 6. (a) log,gp vs log;ot and (b) © vs logot for the interac-
tion U=4, W= —3, and for the following initial densities: A,
po=0.2 and +, p,=0.05. Both graphics have the same time
scale. In (b) there are also plotted the following interactions for
po=0.2: O, U=W=0; 0, U=4, W=0; and X, U=W =4
with initial NNN occupied sites. Note that the case with W =3
is the only one in which the value of O increases in the short-
time regime.

IV. CONCLUSION

In summary, we studied the annihilation reaction
A+ A—0 in the two-dimensional percolation cluster.
After a random deposition of particles on the substratum,
they diffuse and interact with three kinds of short-range
interactions [cases (b), (c), and (d), see Sec. II]. The reac-
tion occurs between NN occupied sites. The main con-
clusions follow.

(1) In general the repulsive NN interaction (U >0)
present in the cases (b)-(d) produce, at short times
(t <<t,), a delay in the reaction comparing with the case
of no interaction (see Fig. 1). At intermediate times
(t, <<t <<t,) the behavior of the density of particles p(?)
strongly depends on the kind of interaction. At long

times (z— o) one expects that the behavior of p(z) is
given by Egs. (5) and (6) regardless of the interactions.

(2) At intermediate times, the power-law behavior
given by Eq. (7) holds for cases (b) and (c) for large values
of U (see Figs. 2 and 4). For given values of the short-
range interaction, the value of the exponent v is indepen-
dent of initial density of particles p,, which means some
degree of universality. The length of the time interval
where the power-law behavior is fulfilled increases when
U increases. Nevertheless, due to the lack of exact
theoretical result for p(¢), the power-law decay must be
considered as a way, the simplest one, to approximate our
numerical data. For this reason the exponent ¥ must be
considered as an effective exponent.

(3) In the short and intermediate regimes the scaling
ansatz given by Eqs. (8)-(10) (see Fig. 3) is verified for
large values of U and for cases (b), and (c) without initial
NNN occupied sites.

(4) For case (d) it is interesting to remark the forma-
tion of groups of particles connected by NNN distances
at short times (see Figs. 5 and 6) and the abrupt decay of
log,p0 and O(¢) at intermediate times, which means the
sudden extinction of NNN structures.

Let us finally comment that, even though our Monte
Carlo simulations are restricted to two-dimensional per-
colation clusters, we expect similar conclusions for all
substrata with the spectral dimension d; <2 (for these
cases d,/2<y<1). On the other hand, in the
intermediate-time regime, the density is not so low as in
the asymptotic regime, where one expects the universal
behavior of Eq. (2). Therefore, from the experimental
point of view, the short and intermediate regimes acquire
importance. We hope that our work will encourage new
experiments on annihilation reactions between adsorbed
particles on disordered media with d; <2. Experimental-
ly, the random initial deposition can be thought of as the
condensation of incident particles onto a cooled substra-
tum. After that, with a sudden increase in temperature,
the diffusion starts. Although we do not attempt to pre-
dict any specific experiment, it is interesting to comment
that, for example, an adimensional interaction U=4 at
T =200 K corresponds to an interaction energy U’ of
about 6.7 kJ/mol, which is on the same order as that of
the adsorbate-adsorbate lateral interaction observed in
real systems.
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